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NEW VERSION OF THE THERMODYNAMICALLY CONSISTENT

MODEL OF MAXWELL VISCOSITY

UDC 517:9:539:3S. K. Godunov

Formalization of the evolutionary equations of continuum mechanics in the form of a Galilean-
invariant nondivergent hyperbolic system is described. Special attention is paid to supplementing
the system by additional equations required for validity of the conservation laws. A new version of
Maxwell relaxation terms is proposed which is consistent with the additional equations and ensures
gauge invariance.
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Introduction. This work is a continuation of previous studies (see [1–3]) dealing with the thermodynami-
cally consistent equations invariant under Galilean transformations.

The term thermodynamically consistent implies the existence of a divergent equality compatible with the
equations, whose right side is nonnegative, and if the equations describe a dissipative process, it is strictly positive.
This equality should model the law of entropy nondecrease.

It is usually assumed that in the absence of dissipative processes or if these processes are of nondiffusion
relaxation nature, the equations describing the behavior of continuous media are hyperbolic. The laws of conser-
vation of momentum and energy, as a rule, are included in the system. For these reasons, of hyperbolic systems
composed of conservation laws are distinguished as a special object of mathematical analysis.

In [4, 5], schematization of such kind was studied for the elasticity equations with Maxwell relaxation
modeling irreversible plastic deformation. When preparing a book [5] to translation into English [6], I noticed some
inaccuracies [especially in the schematization from the concluding chapter, which was introduced only in the second
edition in 1997) in implementing the program of setting up hyperbolic systems from conservation laws. The urgency
of the work did not allowed me to clarify the reason for these inaccuracies. Therefore, reducing the last chapter,
I prepared an “appendix” to the English translation, in which I attempted to outline pathways to eliminate the
indicated inaccuracies.

It is customary that beginning to set up a system of equations to describe the processes of interest, one first
needs to ensure hyperbolicity of the system. In other words, it is necessary to achieve that in quasilinear equations,
the coefficient matrices be symmetric. (The coefficients at derivatives with respect to time t should form a positive
definite matrix.) For hyperbolic equations, the local Cauchy problem is correctly formulated for sufficiently smooth
initial data.

Relaxation dissipative processes are described using special right sides of equations but they cannot be
introduced into all equations of the system. Some of the equations should have zero right sides because only
meeting this requirement is it possible to ensure validity of the laws of conservation of energy and momentum for
the solutions. The divergent equalities describing these laws are not included in the system and do not hold for all
of its solutions but only for those which correspond to the initial data subject to additional conditions in the form
of some equalities.
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Implementation of the approach outlined in the indicated “appendix” requires revising our previously de-
veloped viscoelastic deformation models. In particular, greater attention should be paid to the choice of equations
that include Maxwell relaxation terms. The present paper describes approaches to constructing viscoelastic models
taking into account the above remarks.

In Sec. 1, we recall the necessary information from [1, 2] on Galilean-invariant hyperbolic systems and
consider some relatively simple systems that will be used as component parts for further construction.

In Sec. 2, it is shown how these component parts can be combined into compound hyperbolic systems
compatible with the conservation laws. The given systems satisfy the mathematical requirements formulated above.

Of course, use of the constructed equations to model the behavior of particular media requires detailed
physical studies of the choice of the equations of state and dissipation laws and computational and full-scale
experiments. We only propose a possible mathematical scheme for externalizing the results of studies of particular
media.

It should be noted that such studies have been actively and very successfully performed by researches from
Tomsk under the guidance of Academician Panin. The field theory of defects at the mesolevel developed by Panin,
Grinyaev, Chertova et al., (see [7–9]) is based on subtle experiments. This theory leads to equations that can be
included in the abstract scheme described herein.

The constructions below are performed invoking the gauge invariance of the equations (which is widely used
recently [10–12]) relating microscopic defects to stresses. Considering geometrical and “effective elastic” strains
found from the stress field, we relate the inelastic stress component not to the difference between the geometrical
and effective strains but to the Burgers tensor of the latter, for which the effective strains are potentials. The
possibility of ambiguous choice of these potentials does not influence the stresses, which implies gauge invariance.
The above-mentioned drawbacks of our previous studies stemmed from the fact that gauge invariance was not
ensured in them.

The concluding section (Sec. 3) deals with another two mathematically consistent versions of modeling
inelastic processes. One of them is based on the “superfluidity” phenomenon used by Dorovskii (see [13, 14]), and
the other was proposed and briefly described in the author’s previous paper [15, 16].

1. Examples of Hyperbolic Equations Compatible with Additional Conservation Laws. De-
scribing the hyperbolic systems necessary to us, we first give a list of “component parts” from which they are
assembled.

It has been shown [1] that equations of the following divergent form
∂Lq0

∂t
+

∂(ukL)q0

∂xk
= 0,

∂Lui

∂t
+

∂(ukL)ui

∂xk
= 0,

∂Lpj

∂t
+

∂(ukL)pj

∂xk
= 0

(i, k = 1, 2, 3 and uk are the velocity components) are Galilean-invariant if the reproducing potential

L = L(q0 − uiui/2, p1, p2, . . .)

is invariant under rotations. It was assumed that under rotations, the vector made up of the components pj is trans-
formed under any representation of the group SO(3) [or SU(2)]. Subsequently, it turned out [3] that replacing q0

by several unknowns q1, q2, . . . , qm linked to the reproducing potential by the same relation

L = L(q1 − uiui/2, q2 − uiui/2, . . . , qm − uiui/2, p1, p2, . . .),

we can also construct a Galilean-invariant system of equations:
∂Lql

∂t
+

∂(ukL)ql

∂xk
= 0,

∂Lui

∂t
+

∂(ukL)ui

∂xk
= 0,

∂Lpj

∂t
+

∂(ukL)pj

∂xk
= 0.

In [3], the role of such ql was played by the chemical potentials of the various substances or phases constituting the
element of the medium. In this case, Lql

proved to be the partial densities of the constituents and the total density
of the medium ρ was expressed as the sum ρ =

∑
l

Lql
.
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It is easy to verify that the quasilinear form

Lrirj

∂rj

∂t
+ M (k)

rirj

∂pj

∂xk
= 0

of the equations

∂Lri

∂t
+

∂M
(k)
ri

∂xk
= 0

has symmetric coefficient matrices. If L is a convex function of its arguments, i.e., if Lrirj
form a positive definite

matrix, the equations considered are symmetric hyperbolic by “Friedrichs’s” definition.
More complex Galilean-invariant systems (see [2]) are constructed by supplementing the given forms of

equations by additional terms that include only spatial derivatives of the unknown functions. The coefficients in
these additional terms are determined from the reproducing potential L. The added terms should necessarily be
invariant under rotations of the coordinate system. If this condition is satisfied, Galilean invariance will be ensured.

Below we give some examples of systems of equations constructed by the method described above and
formulate some constraints on them. These constraints result from ensuring compatibility of the equations with the
additional relations required for the validity of the laws of conservation of momentum and energy.

The first example, which can be used as the canonical form of the equations of magnetohydrodynamics, has
the following form:

∂Lq0

∂t
+

∂(ukL)q0

∂xk
= 0; (1.1a)

∂Lri

∂t
+

∂(ukL)ri

∂xk
− Lrk

∂ui

∂xk
= 0; (1.1b)

∂Lui

∂t
+

∂(ukL)ui

∂xk
− Lrk

∂ri

∂xk
= 0 (1.1c)

[L = L(q0 + uiui/2, riri), where i, k = 1, 2, 3]. Here nondivergent terms are added to Eqs. (1.1b) and (1.1c). The
symmetry of the coefficient matrix is obviously not broken by the addition of these terms: to (1.1b) we added
derivatives of ui, and to (1.1c), derivatives of ri with identical coefficients Lrk

. We note that Eqs. (1.1c) do not
have the form of conservation laws and, hence, they cannot be treated as the law of conservation of momentum.
This defect is corrected as follows. Equalities (1.1a) and (1.1b) imply that

∂Lri

∂t
+

∂ (ukLri
− uiLrk

)
∂xk

+ ui
∂Lrk

∂xk
= 0,

∂

∂t

(∂Lri

∂xi

)
+

∂

∂xk

(
uk

∂Lri

∂xi

)
= 0,

∂

∂t

( 1
Lq0

∂Lri

∂xi

)
+ uk

∂

∂xk

( 1
Lq0

∂Lri

∂xi

)
= 0.

From this it follows that system (1.1) is compatible with the additional equality

∂Lri

∂xi
= 0. (1.2)

For solutions (1.1) subject to condition (1.2), Eq. (1.1b) can be replaced by the conservation law

∂Lui

∂t
+

∂ [(ukL)ui
− riLrk

]
∂xk

= 0. (1.3)

In magnetohydrodynamics, it is the law of conservation of momentum. Multiplying Eqs. (1.1b) and (1.1c) by q0 and
ri, respectively, and Eq. (1.3) by ui and summing the products, we arrive at one more conservation law (conservation
of energy):

∂E

∂t
+

∂ [uk(E + L)− uiriLrk
]

∂xk
= 0, E = q0Lq0 + riLri + uiLui − L. (1.4)

The above example shows that for the symmetric hyperbolic system (1.1), the conservation laws (1.3)
and (1.4) should not necessarily be satisfied for all of its solutions. They are valid subject to the additional
condition (1.2). For the compatibility of (1.2) with the basic equations, it is essential that (1.1b) and (1.1c) have
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zero right sides. Any right sides that are smooth functions of the unknowns q0, ri, and ui do not disturb the
hyperbolicity of the system but they do not always enable one to establish the compatibility of (1.1) with (1.2), i.e.,
to justify the conservation laws (1.3) and (1.4).

The above example is easy to extend to model elastic processes in isotropic media. For this, one only needs
to replace the vector variable with the components ri by a tensor variable rij (the tensor rij should not necessarily
be symmetric).

Let us give the corresponding hyperbolic system:

∂Lq0

∂t
+

∂ (ukL)q0

∂xk
= 0,

∂Lrij

∂t
+

∂ (ukL)rij

∂xk
− Lrkj

∂ui

∂xk
= 0,

∂Lui

∂t
+

∂ (ukL)ui

∂xk
− Lrkj

∂rij

∂xk
= 0,

(1.5)

compatible with the additional equality

∂Lrij

∂xi
= 0, (1.6)

which ensures the validity of the conservation laws

∂Lui

∂t
+

∂ [(ukL)ui
− rijLrkj

]
∂xk

= 0,
∂E

∂t
+

∂ [uk(E + L)− uirijLrkj
]

∂xk
= 0,

E = q0Lq0 + rijLrij
+ uiLui

− L.

(1.7)

Interpretation of Eqs. (1.7) and some others presented below will be dealt with in Sec. 2.
The construction described above can be generalized by introducing one more new vector equation (conser-

vation law)

∂Lri

∂t
+

∂ (ukL)ri

∂xk
= 0, (1.8)

and supplementing the last equation in (1.5) by the nonzero right side

∂Lui

∂t
+

∂ (ukL)ui

∂xk
− Lrkj

∂rij

∂xk
= rijLrj . (1.9)

The first and second equalities in (1.5) imply that

∂

∂t

( 1
Lq0

∂Lrij

∂xi

)
+ uk

∂

∂xk

( 1
Lq0

∂Lrij

∂xi

)
= 0,

and Eq. (1.8), together with the equation in the first line of (1.5) imply that

∂

∂t

( 1
Lq0

Lrj

)
+ uk

∂

∂xk

( 1
Lq0

Lrj

)
= 0.

Therefore, system (1.5) supplemented by (1.8) is compatible with the relation

∂Lrij

∂xi
− Lrj = 0, (1.10)

which, in this example, substitutes for (1.6). If relation (1.10) is satisfied, Eq. (1.9) ensures the validity of the
conservation laws:

∂Lui

∂t
+

∂ [(ukL)ui
− rijLrkj

]
∂xk

= 0,
∂E

∂t
+

∂ [uk(E + L)− uirijLrkj
]

∂xk
= 0,

E = q0Lq0 + rijLrij + riLrj − L.

(1.11)
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Let us write another example similar to (1.5):

∂Ln

∂t
+

∂ (ukLn + εijkbij)
∂xk

= 0,

∂Lbij

∂t
+

∂ (ukLbij
+ εijkn)

∂xk
− Lbkj

∂ui

∂xk
= 0,

∂Lui

∂t
+

∂ (ukL)ui

∂xk
− Lbkj

∂bij

∂xk
= 0

(1.12)

(εijk is the Levi-Civita symbol; it is equal to zero for equal values of i, j, and k and to ±1 for different i, j, and k,
according to the evenness or oddness of index substitution).

As above, it is verified that system (1.12) is compatible with the additional equality

∂Lbkj

∂xk
= 0, (1.13)

which allows Eq. (1.12) to be written in divergent form
∂Lui

∂t
+

∂ [(ukL)ui
− bijLbkj

]
∂xk

= 0, (1.14)

and to derive one more conservation law
∂E

∂t
+

∂ [uk(E + L)− uibijLbkj
+ nεijkbij ]

∂xk
= 0, (1.15)

E = nLn + bijLbij + uiLui − L.

In the conclusion of Sec. 1, we give a system set up of the previous equations as component parts. In addition, we
include a few more divergent equations and new variables — the temperature T and the four-index tensor pijlm,
which is intended for the elastic moduli if a nonisotropic medium is considered:

∂Lq0

∂t
+

∂ (ukL)q0

∂xk
= 0,

∂Lrij

∂t
+

∂ (ukL)rij

∂xk
− Lrkj

∂ui

∂xk
= 0,

∂Lri

∂t
+

∂ (ukL)ri

∂xk
= 0,

∂Ln

∂t
+

∂ (ukLn + εijkbij)
∂xk

= 0,

∂Lbij

∂t
+

∂ (ukLbij
+ εijkn)

∂xk
− Lbkj

∂ui

∂xk
= 0,

∂Lpijlm

∂t
+

∂ (ukL)pijlm

∂xk
= 0,

(1.16)

∂Lui

∂t
+

∂ (ukL)ui

∂xk
− Lrkj

∂rij

∂xk
− Lbkj

∂bij

∂xk
= rijLrj

,
∂LT

∂t
+

∂ (ukL)T

∂xk
= 0.

This system is compatible with the additional equalities

∂Lrij

∂xi
− Lrj = 0,

∂Lbij

∂xi
= 0, (1.17)

whose satisfaction ensures that for the solutions, the laws of conservation of momentum and energy are valid:

∂Lui

∂t
+

∂ [(ukL)ui
− rijLrkj

− bijLbkj
]

∂xk
= 0,

∂E

∂t
+

∂ [(uk(E + L) + nbijεijk − ui(rijLrkj
+ bijLbkj

)]
∂xk

= 0.

(1.18)

As in the previous examples, E denotes the Legendre transform of the reproducing potential L over all of its
arguments:

E = q0Lq0 + riLri
+ rijLrij

+ nLn + bijLbij
+ pijklLpijkl

+ TLT + uiLui
− L. (1.19)

2. Interpretation of Equations and Validity of Including Dissipative Terms in Them. Equations
(1.16)–(1.18) given at the end of Sec. 1 can be used to describe elastic processes in a moving continuum. In this
case, it should be assumed that Lui

= ρui and that the equations
∂Lq0

∂t
+

∂ (ukL)q0

∂xk
= 0,

∂Lrij

∂t
+

∂ (ukL)rij

∂xk
− ∂ui

∂xk
Lrkj

= 0
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are representations of the continuity equation and the evolution equation for the distortion cij = ∂xi/∂xj0, re-
spectively, in a different notation (Lq0 = ρ and Lrij = ρcij), (xi are Euler coordinates and xj0 are Lagrangian
coordinates):

∂ρ

∂t
+

∂ (ρuk)
∂xk

= 0,
∂ (ρcij)

∂t
+

∂ (ukρcij)
∂xk

− ∂ui

∂xk
ρckj = 0

(for this issue see [5, 6, 17]). The vector Lrj = ∂ρcij/∂xi may be nonzero if in the initial data ρ 6= const and
cij 6= δij . If ρcij = rij = const at t = 0, the equality ∂ρcij/∂xi = ri = 0 also holds for t > 0, as follows from
the above reasoning. The introduced variable T is the temperature; LT = ρS is the entropy per unit volume, for
which the conservation law is described by the last equation in (1.16). The tensor pijkl can be treated as the elastic
modulus tensor.

The variables bij are introduced into the system to describe the continual dislocation field. In this case,
the tensor composed of the values of Lbij plays the role of a transposed Burgers tensor. The dislocation field
characterizes the difference between the physical Lagrangian distortion Aeff and the geometrical distortion A = C−1

(C is a matrix with elements cij = ∂xi/∂xj0 and aij = ∂xi0/∂xj). For the geometrical Lagrangian distortion, the
Burgers tensor Bji = εkli ∂ajl/∂xk is obviously equal to zero. The tensor Lbij = Beff

ji = εkli ∂aeff
jl /∂xk is no longer

necessarily equal to zero but it should necessarily satisfy the additional equation ∂Lbij /∂xi = 0 whatever the law
of variation of Aeff due to inelastic processes, i.e., the processes in which the stress varies not only as a result of
the geometrical deformation described by variation in the density ρ and the tensor Lrij

= ρcij . For this reason, the
proposed equations for Lbij

contain derivatives of the corresponding “chemical potential” n governing the evolution
of the Burgers tensor. These derivative are introduced into the equations so as to ensure validity of the equality
∂Lbij

/∂xi = 0. Here we do not give equations for Aeff
ij , thus ensuring “gauge invariance,” i.e., independence of the

deformation process and the magnitude of the stress field σik = L−rijLrkj
−bijLbkj

on the particular choice of Aeff
ij

compatible with the values of Lbij
participating in the equations (Aeff

ij are potentials with respect to the Burgers
tensor).

Terms accounting for dissipative processes were not included in system (1.16) and, hence, it does not model
them. We now include relaxation right sides in some of the equations. This should be done with caution lest these
right sides break the compatibility of the equations with the additional equalities ∂Lrij

/∂xi = rj and ∂Lbij
/∂xi = 0

required to ensure conservation of momentum and energy. We modify only three lines of system (1.16), which now
become

∂Ln

∂t
+

∂ (ukLn + εijkbij)
∂xk

= −Φn

τ1
,

∂Lpijlm

∂t
+

∂ (ukL)pijlm

∂xk
= −

Ψpijlm

τ2
,

∂LT

∂t
+

∂ (ukL)T

∂xk
=

1
T

(nΦn

τ1
+

pijlmΨpijlm

τ2

)
.

(2.1)

In (2.1), Φ and Ψ are dissipative functions for which nΦn > 0 and pijlmΨpijlm
> 0, and the positive parameters

τ1 > 0 and τ2 > 0, which depend on the state of the medium, characterize the dissipation rate. The right side of
the latter from the modified lines is chosen such that the addition of dissipative terms does not break the energy
conservation law and that the entropy increases.

Here we allowed the parameters pijlm, which describe the elastic properties of the medium, to relax and
vary, whereas the geometrical parameters ρ = Lq0 and ρcij = Lrij

cannot relax in the proposed model. The model
described in papers [4, 5] and in the main part of their English version [6] was based on incorporation of Maxwell
relaxation in the equations for ρcij = Lrij

, which were related to “effective elastic” rather than real geometrical
strains. As was noted in the introduction, this circumstance led to violation of the necessary conservation laws.
The constructions described in the present paper lead to a new version of the Maxwell viscoelastic model, in which
the indicated drawback is eliminated.

We note that here we do not list all permissible versions of accounting for the dissipative processes compatible
with gauge invariance. If, for example, the fifth equality of (1.16) is not written with zero right side but is represented
as (æ > 0)

∂Lbij

∂t
+

∂ (ukLbij + εijkn)
∂xk

− Lbkj

∂ui

∂xk
= εiαβ

∂

∂xα

(
æεβγδ

∂bδj

∂xγ

)
, (2.2)
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then it is easy to verify that it is compatible with the relation ∂Lbij /∂xi = 0 required to us. The right side of (2.2)
is introduced to model the diffusion of dislocation defects. Along with the indicated modification of Eqs. (1.16),
the zero right sides of the energy equation [the second in (1.18)] and the entropy equation should be replaced,
respectively, by

− ∂

∂xα

[
bijæ

(
εαiβεβαδ

∂bδj

∂xγ

)]
,

æ

T

∑
β,j

(
εβγδ

∂bδj

∂xγ

)2

.

These right sides describe the additional energy flux and the entropy increment due to diffusion of defects.
3. A Few Other Generalizations. We give one more version of thermodynamically consistent hyperbolic

equations for a two-phase medium, one of whose phases behaves like a superfluid liquid. This model was inspired by
Dorovskii’s papers [13, 14], although it does not follows them literally. The model uses two chemical potentials q0

and q1, which refer to the elastoplastic and superfluid phases, respectively. In this case, the partial densities of
these phases are described using the derivatives Lq0 and Lq1 of the reproducing potential L. The partial densities
satisfy the equations

∂Lq0

∂t
+

∂ (ukL)q0

∂xk
= −(Lq0 + Lq1)

∑
s

ν
(s)
0

(ν
(s)
0 q0 + ν

(s)
1 q1

τ (s)

)
,

∂Lq1

∂t
+

∂ (ukLq1 + vk)
∂xk

= −(Lq0 + Lq1)
∑

s

ν
(s)
1

(ν
(s)
0 q0 + ν

(s)
1 q1

τ (s)

)
,

(3.1)

whose right sides model the exchange reactions between the phases. There may be several such reactions, and
each of them is characterized by particular stoichiometric coefficients ν

(s)
0 and ν

(s)
1 (ν(s)

0 + ν
(s)
1 = 0) and particular

parameters τ (s) determining the reaction rate. In this formulation, we follow the schematizations described in [3].
Equations (3.1) imply the validity of the continuity equation

∂ (Lq0 + Lq1)
∂t

+
∂ [uk(Lq0 + Lq1) + vk]

∂xk
= 0. (3.2)

The components vk participating in (3.1) and (3.2) specify the mass velocity of the superfluid phase relative to the
motion of the medium.

As in the previous Secs. 1 and 2, the elastic or elastoplastic phase is described by the equations

∂Lrij

∂t
+

∂ (ukL)rij

∂xk
− ∂ui

∂xk
Lrkj

= 0,

∂Lri

∂t
+

∂ (ukL)ri

∂xk
= 0,

∂Ln

∂t
+

∂ (ukLn + εijkbij)
∂xk

− Φn

τ1
= 0, (3.3)

∂Lbij

∂t
+

∂ (ukLbij
+ εijkn)

∂xk
− Lbkj

∂ui

∂xk
= 0,

∂Lpijlm

∂t
+

∂ (ukL)pijlm

∂xk
= −

Ψpijlm

τ2
.

To close this system, it should be supplemented by the equations governing the mass flux with the components
vi, the equations for the entropy LT , and the equations for the momentum components Lui

. The latter will be
considered later, and the remaining are chosen as follows:

∂Lvi

∂t
+

∂ (ukL)vi

∂xk
−

(
Lvi

∂uk

∂xk
− Lvk

∂uk

∂xi

)
+

∂q1

∂xk
= 0,

∂LT

∂t
+

∂ (ukL)T

∂xk
=

1
T

[
(Lq0 + Lq1)

∑
s

τ (s)(ν(s)
0 q0 + ν

(s)
1 q1)2 +

nΦn

τ1
+

pijlmΨpijlm

τ2

]
> 0.

(3.4)

As is shown, for example, in [3], the first line in (3.4) is compatible with the additional equations

∂Lvi

∂xk
− ∂Lvk

∂xi
= 0. (3.5)

781



Equalities (3.3) are compatible with the equations

∂Lrij

∂xi
= Lri ,

∂Lbij

∂xi
= 0. (3.6)

The nondivergent momentum equation is written as

∂Lui

∂t
+

∂ (ukL)ui

∂xk
− Lrkj

∂rij

∂xk
− Lbkj

∂bij

∂xk
+ Lvi

∂vk

∂xk
− Lvk

∂vk

∂xi
= rijLrj . (3.7)

The system set up of Eqs. (3.1), (3.3), (3.4), and (3.7) is symmetric hyperbolic if the reproducing potential is a
convex function of its arguments. We shall not verify this statement. It is verified by using the same line of reasoning
as above and in [2] for the component equations of our system.

By means of the additional relations (3.5) and (3.6), Eqs. (3.7) are reduced to the divergent form

∂Lui

∂t
+

∂ [(ukL)ui − rijLrkj
− bijLbkj

+ vkLvi − δikvrLvr ]
∂xk

= 0, (3.8)

∂Lui

∂t
+

∂ [(ukL)ui
− rijLrkj

bijLbkj
+ vkLvi

− δikvrLvr
]

∂xk
= 0, (3.8)

which is used, as in the examples from Sec. 2 and the present chapter, to derive the divergent equality of the energy
conservation law. We do not give it here. The constructed equations are Galilean-invariant if L is invariant under
rotations and if its dependence on q0, q1, and ui is given by

L = L(q0 − uiui/2, q1 − uiui/2, . . . ).

We note that it is reasonable to write Eq. (3.8) with the use of the stress tensor

∂Lu1

∂t
+

∂ [ukLui
− σik]

∂xk
= 0,

σik = −L + rijLrkj
+ bijLbkj

+ vkLvi
− δikvrLvr

,

in which the terms are the products rijLrkj
, bijLbkj

, vkLvi
, and −δikvkLvk

, each of which corresponds to a particular
“component part” of the structure. In constructing the above models, we alternatively increased the number of
equations and the processes described by them, each time including additional terms in the law of conservation of
momentum, i.e., modifying the stress tensor σik.

There is another method of including new unknowns in constructing thermodynamically consistent hyperbolic
systems (see [15–17]). As such new unknowns, it is possible to choose the additional terms γik included in the stress
tensor calculated by the formula

σik = −L + rijLrkj
+ bijLbkj

+ vkLvi − δikvrLvr − γik.

In this case, of course, it should be assumed that γik are included as additional arguments in the reproducing
potential L.

Equations (3.7) now become

∂Lui

∂t
+

∂ [(ukL)ui
− γik]

∂xk
− Lrkj

∂rij

∂xk
− Lbkj

∂bij

∂xk
+ Lvi

∂vk

∂xk
− Lvk

∂vk

∂xi
= rijLrj

.

In addition, the system should be supplemented by new equations. These equations can contain dissipative right
sides:

∂Lγij

∂t
+

∂ (ukL)γij

∂xk
− ∂ui

∂xi
=

Ωγij

τ3

(Ω is a dissipation function), which require inclusion of the additional term T−1γijΩγij in the right side of the
entropy equation. The reader can easily verify that after the extension described above, our equations ensure that
the divergent energy equation with zero right side holds. Of course, in this case it is necessary to assume that the
additional conditions (3.5) and (3.6) are also valid.
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